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M E C H A N I C S  OF S O L I D S  AT T H E  S I B E R I A N  D I V I S I O N  

OF T H E  R U S S I A N  A C A D E M Y  OF S C I E N C E S  IN 1988-1997 

B. D. Annin UDC 531 

The present review of the theoretical and experimental studies in mechanics of solids performed at the 
scientific centers in Novosibirsk, Krasnoyarsk, Tomsk, and Yakutsk in the last decade is a continuation of the 
review of the investigations performed at the Siberian Division of the Russian Academy of Sciences from 1957 
till 1987 [1]. 

1. M a t h e m a t i c a l  Mode l s  of  Solids [2-53]. The methods of the mechanics of solids provide the 
background to engineering computations in modern machine building. The behavior Gi materials under 
extreme conditions (intense force and temperature loads, plastic metal working, etc.) is accompanied by 
considerable plastic deformations. Therefore, the construction of mathematical models of solids, including 
the investigation of irreversible deformations and failure processes, is one of the basic lines of research in 
mechanics of solids. 

(A) Many experiments on complex loading of various metals and alloys at t = 20~ were performed 
at the Mining Institute (Novosibirsk) [2-5] in the last decade. The laws of elastoplastic deformation under 
complex loading, i.e., under partial unloading in some directions and under active loading in others, were 
studied. The possibility of considerable increase in the strength and deformation properties in one or several 
directions under definite loading conditions was revealed. Figure 1 (z and y are the circumferential and 
axial stresses of a thin-walled tube, respectively) shows the loading trajectory along which the strength and 
deformation properties of the initially anisotropic alloy F_,-ll0 (Zr and 1% Nb) are increased, and Fig. 2 shows 
the axial stress (x axis) versus the axial deformation (y axis) for purely axial tension (squares) and complex 
loading (circles). As is seen from Fig. 2, the yield point cry. in the axial direction exceeds the initial value of 
as by a factor of 1.8 and the initial strength limit of the alloy upon axial tension by a factor of 1.2. When 
the limiting properties are preserved in the circumferential direction, ultimate deformation is increased in the 
axial direction. Complex loading with partial unloading in some directions and with active loading in others is 
used as the method of increasing the strength and deformation characteristics of metals and is applied in the 
manufacture of tubes for heat-liberating members of atomic reactors. This method was granted a patent of the 
Russian Federation. Zhigalkin et al. [2], Chanyshev [6, 7], and Kovrizhnykh [8] constructed new variants of the 
relationship between the stress tensor increment A~rij and the strain tensor increment Aeij of a strengthening 
body of the form I 

A~ij  = CijktAo'kl. 

Here the tensor Cijkt depends on instantaneous values of the stresses and strains, the deformation history, 
and on the direction of subsequent loading, i.e., on the direction of the Azrij vector in the space (r/j. 

At the Institute of Physicotechnical Problems of the North (Yakutsk), experimental investigations in 
which the appearance of plastic strains (deviation from the laws of elastic deformation) was established by 
highly accurate holographic interferometry and Moir~ fringe methods were performed [9, 10]. The gradient 

1Summation from 1 to 3 is performed over repeat subscripts.. 
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plasticity criterion of materials in a nonuniform stress state in the form 2 

a~ia~j -- 2k 2 (1 § ~/Llgrad(a~ialj)l) 2 

was based on the experimental data obtained. Here a~j are the components of the stress deviator tensor, k 
is the shear yield point in a uniform stress state, and L is a parameter that has the dimension of length 
and depends on the properties of the material (for example, for steel and aluminum alloys, L is of the order 
of 10 -1 mm). The range of application of the gradient yield criterion was studied by Legan [11]. In [10, 
12], Novopashin et al. analyzed the kinetics of elastoplastic strain with the use of this criterion. For brittle 
materials, the gradient strength criteria was studied by Legan et al. [13-16]. 

At the Institute of Strength Physics and Materials Science (Tomsk), based on the experimental data 
on displacements of the points upon deformation, obtained by the method of laser speckle interferometry, 
Panin et al. [17, 18] studied the effects of strain localization. 

At the Lavrent'ev Institute of Hydrodynamics (Novosibirsk), the formation of localization bands under 
dynamic loading of various materials (Cu, Nb, A1, Teflon, etc.) was investigated [19, 20]. It was noted 
that materials undergo forced structuring at the macrolevel. Kostyukov [21, 22] revealed the solid-phase 
delamination and formation of large-scale structural inhomogeneities in compaction for binary powdered 
materials. 

In [18, 23], Panin et al. developed new continuum models with defects and applied them to the 
development of methods of computer-assisted synthesis of new materials [24]. 

In [25], Ivanov and Kurguzov proposed a method of numerical simulation of plane elastoplastic 
deformation of thin seams between rigid units in which, by the seam, a layer of momentumless finite elements 
was meant. Equations that determine the forces applied to the edges of the elements versus the average values 
of the velocities of these edges were derived. In [26], they presented the results of a numerical simulation of 
displacement waves and deformation localization for a tensile-stressed band of rigid (nondeformable) units with 
elastoplastic seams whose angles of inclination relative to the axis of the band are of a random character. From 
the numerical experiments performed, they concluded that knowledge of the displacement waves and rotation 
of the units at the stages of elastic and initial elastoplastic strains allow one to predict strain-localization 
zones in a limiting state. 

For a long time, continuum models have been advanced independently of the ideas of microstructural 
mechanisms of irreversible processes in condensed media. At present, these ideas are applied widely for 
construction of the models of real media. In this connection, the problem of transition from microstructural 
to macrostructural characteristics arises. To solve this problem, Merzhievskii et al. [27-33] used the Maxwell 
approach to represent an irreversible deformation of any condensed medium as a macroscopic result of the 

�9 regrouping and displacement of the molecules (particles) of the medium to a stable equilibrium position. The 

2See footnote No. 1. 
518 



characteristic time of regrouping is a relaxation time of the state parameters. A transition from microstructural 
to macrostructural characteristics was realized by relating the relaxation time to the macrostructural 
mechanism (the ideas of the latter may change and develop). This approach made it possible to construct a 
number of models of dynamic deformation of structurally nonuniform media, including macroisotropic and 
initially anisotropic ones. Among them are the deformation and fracture models for metals, the model of 
nonlinear heat conduction which incorporates the finite heat-transfer velocity, and the models of reinforced 
composites and porous media. 

(B) In [34-43], the results of theoretical and experimental investigations of deformation of bulk media 
and rocks were reported. In [34], Bobryakov et al. presented new experimental data on the specific features 
of deformation of a bulk medium, and Leont'ev and Nazarov [35] gave the results of model experiments on 
determination of the tangential rigidity between interblock contacts with the use of mechanical and acoustic 
data. The effect of the structure on the strength of rocks was discussed by Revuzhenko et al. [36]. 

The elastoplastic behavior and fracture of materials was described by Shemyakin [37] within the 
framework of the phenomenological model. This model is based on the idea of the medium as an ensemble 
of elastic units whose surfa~z~s interact with each other. Residual strain appears owing to the slipping of the 
units, and considerable slippages lead to failure. 

In [38], Revuzhenko treated the rock as a composite with an internal structure. He introduced 
microvelocity and microstress fields and also determined averaging procedures that  allow one to make a 
transition to the model macroparameters. The problems of the formation of a unit structure upon shear of a 
loose material were studied in [39]. 

The asymmetric solution of the equilibrium problem of a plastic mass in a convergent symmetric 
channel was obtained by the method of peak loading by Babakov and Volodina [41]. An upper estimate of 
the peak load was found, and the dimensions of fragments into which the plastic medium is fractured in the 
channel were determined. In [42], Babakov et ai. analyzed the action of a flat rigid smooth punch undergoing 
a transverse load on the inelastoplastic incompressible ground. They described the experimentally obtained 
pattern of hinged revolution of the ground around the lower end of a punch, derived a formula for the upper 
estimate of an ultimate load, and made comparison with experiment. The problem of a spherical stress wave in 
rock bodies was solved by the method of short and weak waves, and the effect of the reinforcement, dilatancy, 
and internal friction on the propagation of stress waves in solids was evaluated based on this solution by 
Babakov and Zagorskikh [43]. 

(C) Experimental and theoretical investigations concerning the determination of the dependence 
between stress tensors and creep strain velocities were carried out. In terms of the mechanics of solids, a link 
between high-temperature creep and superplasticity was established in the papers of Tsvelodub, Nikitenko, 
Sosnin, et al. [44-48]. Some specific features of a high-temperature strain were revealed. The specific features 
obtained were used to solve the problem of plastic treatment of materials, including superplasticity or related 
regimes. Some developments have found application in industry [49-53]. 

2. M e c h a n i c s  of  C o m p o s i t e s  [54-80]. The stress-strain states of shells made of composites were 
analyzed in [54-58]. The stability of cylindrical composite shells under static and dynamic loading was studied 
as well. In [54-56], Nemirovskii et al. clarified the specific features of the supercritical behavior of layered 
shells, depending on the rigidity characteristics of layers, their mutual positions, wave formation, and on the 
types of loading. In [57], Andreev and Nemirovskii proposed and realized a numerical algorithm for solving the 
equations of layered rotational shells, taking into account transverse shears. In [58], Mezentsev and Nemirovskii 
derived equations to determine stress-strain states of helicoidal shells with allowance for transverse shears and 
the reinforcing structure. They also presented the scheme of rational reinforcement for the cases of loading at 
normal pressure. 

The problems of design and strength calculation of promising light-weight composite materials which 
are polymer matrices with inserted spherical microparticles were dealt with in [59-61]. The optimization 
problem of a layered sphere located inside the matrix upon triaxial tension at infinity was considered by 
Alekhin and Baev [62]. The order and thickness of the layers from a given set of materials were found for the 
lightest sphere and its maximum strength. 
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In [63], models describing the interaction of the components of a fibrous composite during its formation 
were developed. The conditions for obtaining anisotropic composite materials with maximum reinforcement 
were determined. The possibilities of creating materials with unique properties were shown using the example 
of titanium alloys reinforced by high-strength metallic fibers. 

The behavior of unidirectional fibrous composites within the framework of a shear model was studied 
by Mikhailov and Lankina [64, 65]. This model was obtained as a certain asymptotics of the exact formulatiol~ 
of the problem. A method of obtaining more and more exact approximations was given by Mikhailov [66]. 

The papers by Demeshkin, Kornev, Gorshkov, Makarov, and Aseev [67-72] were devoted to analysis 
of dynamic deformation and fracture of unidirectional composites. Three (one shock and two explosive) 
techniques for finding the dynamic characteristics of glass- and organoplastics over a wide range of 
strain velocities (from quasi-static to rigid explosive loading) were realized. A sharp increase in strength 
characteristics under shock and explosive loading was established. The time of fracture of a unidirectional 
composite under shock loading was estimated. The damping of oscillations of composite rings was described. 

In [73], based on the averaging method, Annin et al. presented a method of determining the rigidity and 
strength characteristics of composites with a periodic structure. In [74], the inverse problem m determination 
of the structure of laminated and fibrous composites ensuring the prescribed mechanical characteristics m was 
discussed. Annin et al. [75] considered the problems of synthesis of a layered material with a periodic structure 
consisting of a large number of thin layers made of different materials and having the prescribed averaged 
elastic and thermophysical characteristics and also the problems of synthesis of elastic and thermoelastic 
multilayer structures of minimal weight. 

Reznikov and Shalaginova [76, 77] proposed a technique for obtaining constitutive relations and for 
calculating the strength of lightweight fibrous composites based on the concept of structural analysis and on 
a rod-type mechanical model. 

Many composite materials can be described within the framework of the anisotropic theory of elasticity. 
The mathematical structure of fourth-rank tensors of the elasticity moduli Aijk t  and of the compliance 
coefficients aijkl was studied by Ostrosablin [78-80]. The matrices of the elasticity moduli A and those of 
the compliance a are of the form A = T A T  ~, a = A -1  = T A - 1 T  ~, A = diag (A1,A2,Aa,A4,As, A6), and 
T ~ = T -1, while the canonical invariant writing of the generalized Hook's law is as follows: 

ai t i l  = A l e j t j l ,  aiti2 = A2ej t j2 ,  aiti3 = A3ejtj3, 

O'iti4 : ~ 4 E j t j 4  , ~riti5 = . ,~5Cjtj5 , O'iti6 = ~ 6 e j t j 6 .  

Here summation from 1 to 6 is performed over the repeat subscripts i and j; T = [-*in] and ai and ej are the 
stress- and strain-tensor components presented in the vector form 

= (a11,  22,  33, v%23, v  13, v%12), = ( 11,  22, v  13, 
The elastic eigenstates tin, which depend in the general case on 15 arbitrary parameters, were found 

using the orthogonalization and normalization of an arbitrary triangular matrix with diagonal elements equal 
to unity. The author classified anisotropic materials according to a number of different eigenmoduli ~k and 
their multiples ~i. The symbol (~1,~2, . - - ,~k},  k ~< 6, c~i >/ 1, ~1 + ~2 + --- + c~k = 6 was put into 
correspondence with each material. All anisotropic materials were divided into 32 qualitatively different classes. 
The eigenmoduli of elasticity and the states for materials of crystallographic systems were found. In [78, 
80], Ostrosablin solved the problem of the closest boundaries of elasticity constants, which was posed by 
Bekhterev in the 1920s, presented the necessary and sufficient conditions of positive definiteness of the specific 
deformation energy, and also gave formulas for practical elasticity constants showing the ranges of variability 
of these constants. Similar formulas were given for materials of all crystallographic systems. In [79], he found 
eigenvalues and eigenvectors for the tensor Ai~kl = (Aik l j  + A i~: j ) /2  of the coefficients in the equations of 
motion in terms of displacements of the linear theory of elasticity. Eigenvalues and eigenvectors were also 
found for matrices Ai* k of the coefficients of materials of crystallographic systems. Based on the number of 
different eigenvalues and their multiples, he grouped the equations of motion into 32 classes and also indicated 
materials with negative Poisson ratios. It was noted that, in this case, the equations for each displacement 
become nondependent on each other. 
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3. E v o l u t i o n  of  t h e  M e t h o d s  of  So lv ing  P r o b l e m s  in M e c h a n i c s  of  Sol ids  [81-171]. 
(A) The symmetry properties were studied, and new exact solutions of various differential equations of the 
mechanics of solids were developed in [81-86]. In [81], Senashov and Vinogradov described all high-order 
local symmetries (Lie-Bs group) and all conservation laws for equations of a Mises medium in a plane 
stationary case. These equations were shown to admit an infinite series of symmetries and conservation laws 
constructed by recurrent formulas. In [82], Senashov used these laws to derive a solution of the Cauchy 
problem in analytical form. In [83], he obtained new classes of solutions of the spatial equations of ideal 
plasticity describing helical-spiral flows, which can be used for analysis of the free state of rods under complex 
loading. 

A wide range of problems of plane static and dynamic problems of the nonlinear theory of elasticity 
was investigated by the methods of the theory of complex-valued functions by Bondar' [87-90]. The method of 
reducing a two-dimensional plane problem to a one-dimensional boundary-value problem, which was developed 
in the linear theory, was extended to nonlinear elasticity, thus leading to nonlinear boundary-value problems 
for complex potentials. The latter was solved by a modified Newton method and by the method of small 
parameter. He considered the finite plane deformation under certain constraints (incompressibility and weak 
compressibility) and established sufficient ellipticity conditions for static equations. Radok's results in the 
linear theory were extended to a dynamic problem. A number of plane nonlinear problems, including the 
problems of an equistrength hole, the motion of pressure momentum over the surface of a semi-infinite elastic 
body, etc., were solved analytically. 

The problems of the construction of general solutions of linear elasticity theory equations and also the 
problems of reduction of these equations to three independent wave equations were investigated in [91-95]. 
In [91, 92, 95], Ostrosablin found eigenoperators and eigenvectors for the system of differentiM equations 
of the linear theory of elasticity that allowed these equations to be reduced to three independent ones. He 
also derived formulas for an elastic anisotropic medium (generalization of the Green's medium) with purely 
longitudinal and transverse waves for any direction of the wave normal, as well as for special orthotropic and 
transversely isotropic materials [91, 92]. In [93, 95], Ostrosablin and Senashov showed that  to each form of 
the general solution corresponds the formula of derivation of new solutions, i.e., a certain symmetry operator. 
The general solution of the linear system A u  = 0 of partial differential equations of the elasticity theory is of 
the f o r m u = C ~ , D ~ = f ,  a n d B f = 0 o r u = C ~ a n d D ~ = 0 i f D K e r C =  Ker B; note that  A C = B D  
[93]. The symmetry operator Q = C B *  (the symbol * refers to the formally conjugate operator, A = A*, and 
D = D*) transforms the solution of the equation Aft = 0 into a new solution u = CB*f i  for ~o = B*fi as 
well. In the case of an isotropic material, Ostrosablin [93] found symmetry operators for the Kelvin-Lam~, 
Galerkin, and Papkovich-Neuber solutions and studied the generality of these solutions. It was shown in [94] 
that  there are 17 equivalent forms with three compatibility conditions of small deformations. Seventeen forms 
of the general solutions of equilibrium equations via three stress functions and a correct formulation of the 
stress problem of the theory of elasticity were given. 

Great attention was given to the method of studying elastic and elastoplastic problems based on the 
theory of variational inequalities. Khludnev [96-99, 126] proved the solvability of a wide range of elastoplastic 
boundary-value problems formulated with the use of variational inequalities. The problem of optimal control 
in Singorini-type contact problems for plates and shells was investigated in detail. In [100-103], Khludnev 
solved the problems of deformation of elastic and inelastic cracked bodies. At the crack faces, a boundary 
condition of mutual nonpenetration of the faces was found. For plates, this condition is of the form 

where [.] is the jump of the function at the crack faces, 2h is the thickness of the plate, W = (w I, w2), and w 
are the horizontal and vertical displacements of the plate, respectively, and v is the normal vector to the crack 
surface. He also found the complete set of natural boundary conditions in the form of a system of equalities 
and inequalities satisfied at the crack faces, and solvability of the boundary-value problems for cracked bodies 
was established. The proposed approach is different from the classical one, where the boundary conditions at 
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the crack faces are of the form of equalities. 
The investigations of Kovtunenko [104-108] were devoted to a numerical solution of variational 

inequalities. Differential inequalities were approximated by nonlinear differential equations with the use of 
the penalty method. He proposed iteration methods of their linearization, proved the convergence of the 
solutions of approximate problems, and estimated the errors. He also built linear approximate models for 
contact elastoplastic problems. Another promising approach to analysis of variational inequalities was the use 
of projection operators. Such projectors were constructed for a number of one-dimensional problems for the 
models of an elastic cut under the condition that the cut edges are not penetrable. This allowed him to reduce 
variational inequalities to differential equations and to solve them analytically. In addition, the problem of 
the choice of optimal cuts was studied based on the kinematic and force criteria. 

Sadovskii and Annin [109-116] developed an approach based on the formulation of constitutive relations 
of the flow theory in the form of variational inequalities for hyperbolic operators. This approach advanced 
investigations along two lines: obtaining generalized solutions with velocity and stress discontinuities by 
elastoplastic shock waves and developing computational methods of solving dynamic problems. The following 
models of elastoplastic flow were studied: the Prandtl-Reis model of dynamic straining of an elastic-perfectly- 
plastic body and the Kadashevich-Novozhilov model of body strengthening with an arbitrary nonlinear 
hardening diagram. For the case of small elastoplastic deformations, integral generalizations of the models 
that allow one to define correctly the notion of discontinuous solutions were constructed. Shock waves in 
linearly hardening media under Mises and Tresca-St. Venant plasticity conditions were classified in [109-111]. 
In [112], based on variational inequalities, Sadovskii developed conserwtive numerical methods of solving the 
problems of deformation of elastic-perfectly-plastic bodies adapted to a through calculation of discontinuous 
solutions. Annin and Sadovskii [113] developed new economic algorithms for numerical solution of dynamic 
problems within the framework of a model of nonlinear isotropic and translational hardening including the 
correction of stresses and hardening parameters, with projection onto the yield surface. The proposed methods 
and algorithms were used in a numerical study of the processes of pulsed deformation of laminated plates on 
mandrels [114-116]. 

Algorithms for solving the problems of collision of deformable solids with allowance for material 
discontinuity caused by its fracture were developed mad realized by Gulidov et al. [117-119]. Numerical 
algorithms for solving the dynamic problems of elastic and plastic deformation on the basis of several 
independent approximations of desired functions were reported by Anisimov and Bogulskii [120]. On each 
layer, two- and three-dimensional problems were split in time into one-dimensional with a simultaneous 
formation of artificial dissociation which is sufficient for ensuring the monotone character of the numerical 
solution. In [121], Mashukov developed the ELAST code intended for solution of plane and spatial problems 
of the linear elasticity theory and also solved a number of problems for a curvilinear ponderable half-plane by 
realizing numerically the method of singular boundary integral equations. 

As applied to the solution of thermoelastoplastic problems, the finite-element method was developed in 
[122-131]. In [122], Korobeinikov et al. described the possibilities of the PIONER program intended for solution 
of geometric and material nonlinear static and dynamic problems of the mechanics of solids. Use was made of 
various models for materials: the model of linear isotropic elastic material, the Mooney-Rivlin incompressible 
hyperelastic material model, the model of thermoelastoplastic material with allowance for creep deformation, 
and the model of linear elastic material with allowance for fracturing. The solutions of some plane and 
axisymmetric nonlinear problems obtained by means of this complex were given by Korobeinikov [123, 124]. 
The temperature effect on the critical time of creep buckling of a hinged axially compressed rod was studied by 
Annin et ah [125]. Algorithms for solving nonlinear contact problems were proposed in [126, pp. 167-177; 127, 
128]. These algorithms were applied in the development of two- and three-dimensional contact elements. The 
PIONER program allowed one to solve contact problems by two alternative methods: the method of Lagrange 
multipliers and the penalty-function method. The three-dimensional geometric and material nonlinear contact 
problem was solved by Korobeinikov, Alekhin, and Bondarenko [128]. A new finite element intended for the 
solution of problems of deformation of thin-walled structures was given by Korobeinikov and Bondarenko [129, 
130]. A new approach to the formulation of the element was the introduction of a tangential stiffness matrix 
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due to large rotation increments, and the use of nodes with five or six degrees of freedom in one element, 
which makes it possible to simulate complicated thin-walled structures. In [130], a problem that simulates 
the formation of a curvilinear panel from a reinforced aluminum plate was solved. In [131], Korobeinikov 
constructed a finite element of the atomic lattice (atomic pair) by means of which one can solve the problems 
of deformation and buckling of atomic lattices subjected to mechanical actions. A new model of monocrystal 
fracture was proposed based on the solution of the problem of tension of a four-atomic cell. 

Algorithms for solving static and dynamic problems of the theory of elasticity and plasticity were 
developed by Volchkov et al. [132-134]. In [133], an iteration method of solving static problems was proposed 
based on the transformation of the residuals of equations into self-balanced ones and on a subsequent extension 
of the self-balance region of residuals. The method was shown to be efficient by solving problems for the 
Poisson equation with strongly varying coefficients. Volchkov et al. [134] constructed the finite element upon 
conjugation between the elements as the condition of force and moment continuity at the element faces. 

A discrete-variational method of constructing models for computer simulation of nonlinear dynamic 
processes of deformation and fracture of homogeneous and composite materials and structural members was 
proposed by Koshur et al. [135, 136]. A computational algorithm for simulation of two- and three-dimensional 
dynamic contact interactions of bodies being deformed was developed with allowance for elastoviscoplastic 
deformation and fracture of materials. 

In [133-138], the solutions of continuum mechanics equations for which deformations are uniform were 
discussed. In [140, 141], Bogan investigated problems of the anisotropic theory of elasticity with a small 
parameter. A semi-analytical method of solving dynamic problems of wave propagation in thin-layered media 
(the thickness is smaller than the wavelength) was proposed by Nazarov in [143]. In [144], he proposed a 
modification of the integration method which allows one to solve mixed dynamic problems and presented 
exarnples of the action of a vibration source on the surface of an elastic half-space and of wave propagation 
in a medium with a boundary along which the contact is not complete. 

The investigations in [145-153] dealt with the correctness of inverse static problems and with the 
development of algorithms for their solution. Among those considered were 

�9 inverse problems of inelastic deformation which are associated with the determination of external 
actions necessary to obtain the required residual shape of a body for a given period with allowance for elastic 
(instantaneous) and inelastic (slow) unloading upon removal of these deformations [145-147]; 

�9 problems in which displacements and loads are prescribed simultaneously on a definite section of the 
surface of a loaded body and are not determined on the remaining section of the body [148-151]; 

�9 essentially overdetermined problems in which the displacement and the load are given simultaneously 
over the entire surface of a body, and it is necessary to determine the body's average characteristics and to 
find inhomogeneities in it (cracks, hollows, and inclusions) [152, 153]. 

The effect of the shape of a pulse load on the residual sagging of plates whose boundaries consist 
of straight sections and circular arcs was studied with the use of a rigid-plastic model by Nemirovskii and 
Romanova [154]. 

The problem of fracture of an elastoplastic plate by a penetrating rigid striker was solved by Babakov 
and Zinov'ev [155]. Taking into account the crack zone moving ahead of a striker allowed them to describe the 
effect of back spalting of the plate. Results of a study of back spalling of the plate in impact against its face 
surface by a sharpened rigid striker were reported. Plate materials were described by an elastoplastic model 
with yield cutoff. In penetrating a striker, three deformation zones were assumed to appear in an obstacle: a 
plastic-deformation zone, a crack zone, and an elastic-deformation zone. They also revealed that taking into 
account the cracks formed during piercing of a plate gives rise to a scale effect - -  the effect of the dimensions 
of a striker and a plate on the critical depth of striker penetration at which spalling of the rear surface of the 
plate begins. 

(B) One method of constructing two-dimensional equations of the theory of plates and shells is 
thickness expansion with the use of Legendre polynomials, on the basis of which G. V. Ivanov developed 
a technique of using several approximations of the same unknown functions as the sections of the series in 
Legendre polynomials. Based on this technique, Alekseev [156] obtained a one-parameter family of successive 
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approximations of equations of deformation of a variable-thickness layer in an arbitrary curvilinear coordinate 
system. In [157], he described a procedure of reducing three-dimensional equations of the linear theory of 
elasticity to a two-parameter sequence of two-dimensional problems of a variable-thickness elastic layer in 
an arbitrary curvilinear coordinate system. In specifying various variants of the boundary conditions on face 
surfaces, the differential order of the equations for each approximation does not change: stresses, displacements, 
and combined conditions can be given. 

Nonlinear models of deformation of shells and rods with six and nine kinematic degrees of freedom, 
respectively, were constructed by Shkutin [158]. In [142], he derived nonlinear equations of shell and rod 
deflection with allowance for the finite rotation of material elements. For this purpose, he introduced force 
and deformation tensors which are not sensitive to rigid rotations and are energetically conjugate in the 
metrics of a rotating basis. 

The application of a numerical-analytical approach to the solution of nonlinear buckling problems for 
thin-walled shells enabled Astapov and Kornev to describe the process of shell buckling [159, 160]. They 
found that in finite saggings, the initial section of the spectra of critical loads is distorted, the buckling shapes 
rearrange, and local buckles can appear. They considered models describing the supercritical behavior of a 
hinged rod lying on a nonlinear-elastic base and loaded by an axial compressing force. Analytical expressions 
for buckling shapes and for the load-sagging dependences were obtained by the perturbation method. The 
initial supercritical behavior of the system relative to the values of parameters characterizing the rigidity of a 
base were analyzed. The possibility of unstable supercritical behavior of the system was predicted analytically 
and shown experimentally. Contradictions that appear in using some known models of an elastic base for 
description of rod buckling were clarified. 

(C) The problem of rational design of shells was dealt with by Nemirovskii and Samsonov [54] and 
by Golushko et al. [161-165]. The momentumless character of the stress state, the equal stress level over 
the reinforcement, the constancy of the specific potential energy, etc. served as the rationality criteria. The 
governing parameters were material structure, shell shape, and wall thickness. The problem of determining 
the shape, dimensions, and parameters of the structure of a shell of revolution from a fibrous composite at 
which the shell has a given sagging was studied. The load on the shell was assumed to be known. In [162], 
Oolushko and Nemirovskii used the condition of the equal stress level of reinforcing elements at the outer 
or inner surface of a shell as the rationality criterion. In [164], Mezentsev and Nemirovskii studied rational 
structures of reinforcement of polyreinforced shells. 

The methods for calculating and designing optimal-in-durability structure elements with simultaneous 
allowance for the vulnerability to damage of the material during its creep were developed by Zaev and 
Nikitenko [166, 167]. The papers by Alekhin and Baev [62], Alekhin et al. [75], Babe and Gusev [168], 
Kanibolotskii and Urzhumtsev [169], and Alekhin and Annin [170, 171] were devoted to the development 
of methods of solving the problems of optimal design of laminated structures from a given limited set of 
materials. 

4. F r ac tu re  Mechan ics  [172-192]. A wide class of problems of finding the shapes of crack trajectories 
in an elastobrittle medium in hydraulic rupture, impact, and in "weak" explosion were solved in [172-180]. In 
the step-by-step construction of the quasi-static trajectory, the damage criterion according to which the crack 
moves in the direction orthogonal to the action of maximum tensile stresses in the vicinity of its tip at each 
moment of crack propagation was used. In [172], Kolodko and Martynyuk studied the specific features of the 
coalescence of two cracks depending on their orientation in the biaxial field of tensile stresses. Trajectories 
of the crack tips in hydraulic rupture near the plane free boundary and the bench were found by Alekseeva 
and Martynyuk [173]. In [174], Martynyuk and Sher [174] showed the decisive effect of the parameters of an 
external biaxial field of compressive stresses near the hole and of the hole field on the shape of the hydraulic- 
rupture crack trajectory when the pressure in it is comparable with stresses acting at infinity. In [175], Efimov 
et al. compared the calculated trajectories of cracks formed during shearing of a bench with experimental ones 
and also showed their good agreement despite high velocities of cracks (approximately 250 m/sec). In [176, 
177], Basheev, Martynyuk, and Sher analyzed the shapes of the trajectories of the cracks originating from 
the boundary of an explosion well, with variation in the basic parameters of an explosion and of the external 
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biaxial field of compressive stresses acting at infinity. They showed that the fracturing zone is close in shape 
to an ellipse whose principal axis is oriented in the direction of the largest (in modulus) external compressive 
stress. The effect of gas penetration into the systems of cracks on the shape and dimensions of the fracture 
zone was evaluated. A simple technique of determining the resistance of rock-type brittle materials to cracks 
was substantiated theoretically and experimentally by Efimov et al. [178-180]. 

Overloads on the surface of an isotropic or piecewise-isotropic half-space with the arrival of waves 
generated by the internal defect like a crack growing from a point along a curve at an angle to the surface 
were studied by Saraikin [181-183]. An analytical solution was obtained for the initial s~age. 

The discrete Novozhilov criterion of brittle strength of an ideal crystalline solid for a crystalline 
lattice with defects (vacancies, admixture atoms, etc.) was generalized by Kornev in [184-189]. For opening-, 
tearing- and sliding-mode cracks, discrete-integral criteria of brittle strength were introduced. In the modified 
Novozhilov criterion, the limits of stress averaging depend on the presence of a defect in the crystalline lattice 
and on its dimension and location in the vicinity of the crack nose. The magnitude of the averaged stresses 
should not exceed theoretical rupture and shear strengths. The substantial effect of vacancy-type defects 
on the critical crack lengths in the vicinity of the crack nose under various types of loading were revealed. 
According to the discrete criterion for an ideM cracked crystalline solid and the discrete-integral criterion for 
bodies with vacancies in the crystalline lattice, the critical lengths of opening-mode cracks are usually different 
by an order of magnitude. According to the Novozhilov and discrete-integral criteria, the critical values of 
loads for fixed crack lengths are severalfold different and give maximum and minimum estimates for failure 
loads of solids. According to the discrete-integral criterion, the critical load can differ substantially from the 
classical one, and its value is directly connected with the defectiveness of the lattice of a crystalline solid in 
the vicinity of the crack nose. Relations for the critical stress intensity factor of both sharp and blunt (at the 
atomic level) opening-, tearing-, or sliding-mode cracks were derived by means of discrete-integral criteria. 
The stability of the broken front of a plane crack was discussed, and the broken crack front was shown to 
tend to a rectilinear one. 

The formulated strength criteria allowed one to evaluate the effect of surfaxe-active substances in the 
crack on the strength of crystalline solids: homoabsorbing atoms on the newly formed crack surface suppress 
the forces of interatomic interaction inside the crack. The tension of three- and four-atomic chains with 
admixture atoms was considered at a given level of tension. These atomic chains were built in an infinite 
chain of bound atoms stretched at infinity. Admixture atoms could be either bound or free. As the potential 
of interatomic interaction, the Morse potential was used. A set of three imaginary positive dimensionless 
quantities, the first two of which reflect the effect of the energy factor and the third of which reflects the 
effect of the dimensional factor, was introduced. The level of strength decrease reached one or two orders of 
magnitude. The decrease in the rupture strength of the atomic chain with the admixture if the latter was 
located at the crack tip could sharply decrease the local resistance to fracture and lead to crack propagation 
under loads that are considerably smaller than the theoretical strength of an admixture-free material. 

In [190-192], Annin, Maximenko, and Abramenko determined the stress intensity factors in composite 
plates and shells. 

The author is grateful to his colleagues who presented materials for this review. 
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